3.802 \(\int \frac{a+b \tan (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\)

Optimal. Leaf size=166 \[ \frac{(a+b) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{(a+b) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}+\frac{2 b}{d \sqrt{\cot (c+d x)}} \]

[Out]

((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]
)/(Sqrt[2]*d) + (2*b)/(d*Sqrt[Cot[c + d*x]]) + ((a + b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2
*Sqrt[2]*d) - ((a + b)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.133518, antiderivative size = 166, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.429, Rules used = {3673, 3529, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{(a+b) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{(a+b) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}+\frac{2 b}{d \sqrt{\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[c + d*x])/Sqrt[Cot[c + d*x]],x]

[Out]

((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]
)/(Sqrt[2]*d) + (2*b)/(d*Sqrt[Cot[c + d*x]]) + ((a + b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2
*Sqrt[2]*d) - ((a + b)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 3673

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{a+b \tan (c+d x)}{\sqrt{\cot (c+d x)}} \, dx &=\int \frac{b+a \cot (c+d x)}{\cot ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 b}{d \sqrt{\cot (c+d x)}}+\int \frac{a-b \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{2 b}{d \sqrt{\cot (c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{-a+b x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 b}{d \sqrt{\cot (c+d x)}}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 b}{d \sqrt{\cot (c+d x)}}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}\\ &=\frac{2 b}{d \sqrt{\cot (c+d x)}}+\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}\\ &=\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{2 b}{d \sqrt{\cot (c+d x)}}+\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}\\ \end{align*}

Mathematica [C]  time = 0.334044, size = 194, normalized size = 1.17 \[ \frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (8 a \tan ^{\frac{3}{2}}(c+d x) \, _2F_1\left (\frac{3}{4},1;\frac{7}{4};-\tan ^2(c+d x)\right )+3 b \left (2 \left (\sqrt{2} \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-\sqrt{2} \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )+8 \sqrt{\tan (c+d x)}+\sqrt{2} \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\sqrt{2} \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[c + d*x])/Sqrt[Cot[c + d*x]],x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(3*b*(2*(Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - Sqrt[2]*ArcTa
n[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Log[
1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] + 8*Sqrt[Tan[c + d*x]]) + 8*a*Hypergeometric2F1[3/4, 1, 7/4, -T
an[c + d*x]^2]*Tan[c + d*x]^(3/2)))/(12*d)

________________________________________________________________________________________

Maple [C]  time = 0.234, size = 1116, normalized size = 6.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))/cot(d*x+c)^(1/2),x)

[Out]

-1/2/d*2^(1/2)*(cos(d*x+c)+1)^2*(cos(d*x+c)-1)*(I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-
1/2*I,1/2*2^(1/2))*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*(
(cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*a-I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/
2*I,1/2*2^(1/2))*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((c
os(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*b-I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*
I,1/2*2^(1/2))*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos
(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*a+I*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,
1/2*2^(1/2))*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d
*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*b-sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1
+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x
+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a-sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin
(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))
^(1/2),1/2-1/2*I,1/2*2^(1/2))*b-sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x
+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/
2),1/2+1/2*I,1/2*2^(1/2))*a-sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))
/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1
/2+1/2*I,1/2*2^(1/2))*b+2*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*sin(d*x+c)*((cos
(d*x+c)-1)/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c
))^(1/2)*b-2*cos(d*x+c)*2^(1/2)*b+2*2^(1/2)*b)/sin(d*x+c)^4/(cos(d*x+c)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.60135, size = 188, normalized size = 1.13 \begin{align*} -\frac{2 \, \sqrt{2}{\left (a - b\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt{2}{\left (a - b\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + \sqrt{2}{\left (a + b\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt{2}{\left (a + b\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - 8 \, b \sqrt{\tan \left (d x + c\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*(a - b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a - b)*arctan(-1/2*s
qrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*(a + b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1
) - sqrt(2)*(a + b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 8*b*sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \tan{\left (c + d x \right )}}{\sqrt{\cot{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))/cot(d*x+c)**(1/2),x)

[Out]

Integral((a + b*tan(c + d*x))/sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \tan \left (d x + c\right ) + a}{\sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)